Mineral reaction interfaces and associated porosity generation

DAVID R. COLE¹, T.C. LABOTKA², P.B. LARSON³, K.L. MORE⁴, E.A. KENIK⁴, M. FAYEK¹, F.J. STADERMANN⁵ AND L.R. RICIPUTI¹

¹Chemical Sciences Division, Oak Ridge National Lab., Oak Ridge, Tennessee 37831, USA (coledr@ornl.gov)
²Dept. of Earth & Planetary Sci., Univ. of Tennessee, Knoxville, Tennessee 37996, USA
³Dept. of Geology, Washington State University, Pullman, Washington 99164, USA
⁴Metals & Ceramics Division, Oak Ridge National Lab., Oak Ridge, Tennessee 37831, USA
⁵Dept. of Physics, Washington University, St. Louis, Missouri 63130, USA

Chemical processes commonly encountered in nature, including hydration-dehydration, cation exchange and oxidation-reduction reactions involving complex fluids containing electrolytes and mixed-volatiles can lead to either passivated mineral surfaces or the formation of reaction rims. Further exchange requires advection and/or diffusion of matter across the zone to the interface between the transformed and unreacted parent phase. Structures within the reaction zone and at the reaction interface, as well as reaction mechanisms and reaction rates, are still poorly constrained for most important rock-forming mineral. This study focused on two aspects of the replacement process, the geometry of the reaction front and the generation of nano- and/or microscopic porosity at or near the interface. Using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS), we interrogated the reaction interface domains in two types of feldspar systems: (a) replacement of plagioclase (≈An₃₀) by albite ± muscovite in the Rico, CO paleo-hydrothermal system, and (b) Amelia albite replaced by K-feldspar in experiments (up to 600°C and 200 MPa) employing 1-2 molal KCl enriched in ¹⁸O. In the case of the natural system, the typical reaction interface appears as a curvilinear, somewhat diffuse zone where crystallographic control is not particularly pronounced. Micropores occur infrequently along the interface, but are commonly observed within fine albite-filled fractures and dislocations that either crosscut or are truncated by the reaction interface. In contrast, the nature of the reaction interface in the experimental sample depends strongly on crystallographic control with an overall jagged appearance, exhibits limited microporosity, and has an unusual corrugated or stitch-like nano-texture right at interface. NanoSIMS images and line scans indicate the interface is sharp in the distribution of ¹⁸O and ¹⁶O.