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Introduction: D-type asteroids are believed to be 

among the most pristine objects in the Solar System 
and contain primordial water and organic compounds 
[1, 2]. D-type asteroids are observed to locate at the 
outer edge of the main belt today [3], but several 
studies suggest that they originated in the outer part of 
the protoplanetary disk and possibly accreted cometary 
ice before their inward migration to the main belt [4]. 
D-type meteoritic analogs are not well established, but 
the ungrouped (C2) Tagish Lake (TL) carbonaceous 
chondrite − a highly porous and aqueously altered car-
bonaceous chondrite with a similar reflectance spec-
trum as D asteroids − may be our best representative 
sample of this type of asteroids [5]. Tagish Lake chon-
drite exhibit several unique features, including (i) high-
ly anomalous D and 15N organic globules, possibly 
similar to cometary (CHON) particles [6] and (ii) 
abundant 13C-rich carbonates [7]. Together, these char-
acteristics suggest that the parent-body of Tagish Lake 
may have formed in the cold outer Solar System and 
potentially incorporated a significant amount of ice [8]. 

Tagish Lake has experienced aqueous alteration on 
its parent-body, as demonstrated by the presence of 
abundant phyllosilicates, magnetite and carbonates [9]. 
The H isotopic composition (𝛿D, relative to SMOW) 
of its water is poorly constrained, but appears to be 
significantly depleted in D (inferred 𝛿DTL for water 
ranging between −900‰ and −270‰) when compared 
to cometary water [10]. However, this result is based 
on mass-balance calculations between whole rock and 
primordial CR-like insoluble organic matter (IOM), 
assuming that the chondrite groups accreted a common 
CR-like D-rich IOM precursor [11]. Alternatively, it 
has been proposed that chondrite groups may have 
accreted more D-poor IOM of different origins [12], 
which consequently could result in an inaccurate esti-
mate of the H isotopic composition of water in Tagish 
Lake. Here we evaluate the 𝛿D value of the water in 
Tagish Lake from in-situ Si/H and 𝛿D measurements 
of its hydrated fine-grained matrix by using the Came-
ca NanoSIMS 50 microprobe at Washington Universi-
ty in St. Louis. 

Methodology: Secondary electron microscope 
(SEM) observations were performed using a Tescan 
Mira3 FEG-SEM. We acquired high-resolution BSE 
mosaics (~7,700 images) on carbon-coated polished 
sections of Tagish Lake [13] and the two CM chon-
drites Murchison and Maribo. Both phyllosilicates-rich 
and phyllosilicate-poor areas were flagged for isotopic 
analysis. Hydrogen isotopes of the matrix were per-

formed with the Wash U NanoSIMS using ~10 pA 
primary beam for meteoritic samples and ~2 pA for 
standard measurements. Prior to isotopic analyses, 
samples were stored in the carousel chamber for 1−2 
weeks to remove adsorbed water. Then, negative sec-
ondary ion images (15x15 µm, 256 x 256 pixels) were 
collected simultaneously in multi-collection mode on 
EMs by combined peak switching (magnetic field #1: 
H-, D- and magnetic field #2: 18O-, 12C14N- and 28Si-). 
An area of ∼20×20 μm was presputtered using a ~100 
pA beam before each measurement for ~1h to remove 
the C coat and residual adsorbed water from the sur-
face of the samples. Measurements were collected over 
~100 cycles with integration times of 1500 µs/px/plane 
for H and D and 500 µs/px/plane for 18O, 12C14N and 
28Si (Figure 1). Hydrogen isotope ratios of unknowns 
were normalized to deposited kerogen from the War-
rawoona Group (𝛿D = −105‰) and epoxy resin sitting 
within the cracks of the meteoritic samples (assumed 
to have a 𝛿D value of 0‰). The NanoSIMS image data 
were processed using L’image software (L. R. Nittler). 

 
Figure 1: NanoSIMS ion images of SE, 1H, 12C14N and 
28Si of one phyllosilicates-rich matrix area of the CM 
Murchison. 
 

Results: The 𝛿D values of Murchison and Maribo 
range between ~ −400 and 600 ± 130‰ (2σ), and the 
phyllosilicates-rich matrix areas appear to be more 
depleted in D compared to the phyllosilicates-poor 
matrix. The 𝛿D values of all the data of the two CM 
chondrites are linearly correlated (R2 = 0.85) with the 
Si/H ratios. An SEM survey of our polished of Tagish 
Lake reveals that the overall petrography of our sample 
is consistent with the dominant carbonate-poor litholo-
gy previously described by [9]. Our 𝛿D data suggest 
that this lithology is enriched in D compared to CM 
chondrites and range between ~600 to 1300 ± 150‰ 
(2σ). These values are in good agreement with the	𝛿D 



values  previously reported by [14] for Tagish Lake 
using a similar analytical condition. The 𝛿D values and 
Si/H ratios of the matrix of Tagish Lake are linearly 
correlated (R2 = 0.76) and display a slope similar to 
that defined by the two CM chondrites (Figure 2). 

 
Figure 2: 𝛿D vs. Si/H (not corrected for different sensi-
tivity factors between Si- and H-) plot of the hydrated 
matrix areas of CM chondrites (red) and Tagish Lake 
(black). Solid lines and dotted curves represent data re-
gression and their 95% confidence intervals, respectively 
(errors are 2σ).   

 
Discussion: The D/H ratios measured for the two 

CM chondrites and Tagish Lake are correlated with the 
elemental Si/H ratio − a proxy for the level of matrix 
hydration [15]. Our observed positive correlations be-
tween 𝛿D and Si/H likely reflect mixing between D-
poor phyllosilicates  (represented by low Si/H ratios) 
and a D-rich organic reservoir (represented by high 
Si/H ratios) [16]. If correct, then the resulting intercept 
should approximate the H isotopic composition of the 
alteration fluid. Using these D/H vs. Si/H correlations, 
Our extracted 𝛿D value for water in Tagish Lake is 
significantly higher compared to that of the CM chon-
drites (𝛿DCM = −242 ± 65‰ vs. 𝛿DTL = 335 ± 335‰, 
vs. 2σ). Our estimate of 𝛿D in CM water is consistent 
with the results of previous studies within uncertainties 
[17, 18]. 

The presence of D-rich water in the chondrite 
Tagish Lake may reflect either (i) the accretion of D-
rich water from the outer part of the Solar System [5] 
or (ii) the loss of volatile H2 by Rayleigh-type distilla-
tion, resulting in the oxidation of metal to magnetite 
[19]. Magnetite is very abundant in the matrix of 
Tagish Lake [9], indicating that Fe oxidation played an 
important role in determining its secondary mineralo-
gy. As Tagish Lake is not so mineralogically and iso-
topically different from CI and CM chondrites, a plau-
sible scenario that may explain its particular D-rich 
water is that the Tagish Lake’s parent-body lost some 
fraction of its H during the conversion of metal to 
magnetite by aqueous alteration. In order to test this 
hypothesis, we compared the H isotopic composition 
of the Tagish Lake water and its total H concentration 

previously reported for this sample  (H = 0.43 wt. %) 
relative to CM Murchison and Maribo (H = 0.84 wt. 
%) [20]. Assuming that the Tagish Lake parent-body 
accreted a similar amount of D-poor water ice as the 
CM parent-body, a loss of ~50% of the H at low tem-
perature (~0°C) by Rayleigh fractionation is able to 
reproduce the H budget of Tagish Lake (Figure 2). The 
work present here suggests that the D-rich composition 
of Tagish Lake’s water may reflect only secondary 
processes on its parent-body and argue against the ac-
cretion of cometary-like ice in D-type asteroids. 

 
Figure 3: 𝛿D value of Tagish Lake (black) and CM 
chondrite (red) water vs. their bulk H concentrations 
relative to CM chondrites. The calculated 𝛿D values of 
the remaining water after loss of H2 from metal oxidation 
by Rayleigh fractionation at 0°C and 200°C is indicated 
by solid and dashed gray curves, respectively (adapted 
from [18], errors are 2σ). 
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