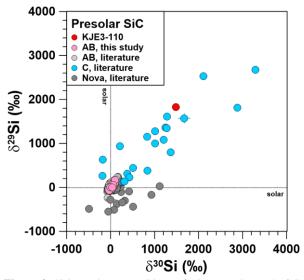
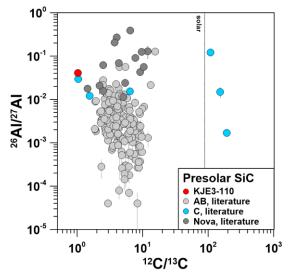

A PRESOLAR SILICON CARBIDE GRAIN OF TYPE C WITH EXTREMELY LOW ¹²C/¹³C RATIO. P. Hoppe¹, J. Schofield², M. Pignatari^{2,3,4,5}, and S. Amari⁶, ¹MPI for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany (email: peter.hoppe@mpic.de), ²E. A. Milne Centre for Astrophysics, University of Hull, UK, ³Konkoly Observatory, Budapest, Hungary, ⁴NuGrid Collaboration, ⁵Joint Institute for Nuclear Astrophysics (JINA-CEE), ⁶McDonnell Center for the Space Sciences and Physics Dept., Washington University, St. Louis, MO 63130, USA.

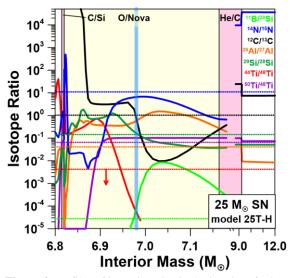
Introduction: Primitive Solar System materials contain small quantities of presolar grains that formed in the winds of evolved stars and in the ejecta of stellar explosions [1]. Silicon carbide (SiC) is the best studied presolar mineral. Based on C-, N-, and Si-isotopic compositions it is divided into distinct populations. While most SiC grains formed in the winds of low-mass asymptotic giant branch (AGB) stars, supernovae (SNe) made an important contribution to the population of presolar SiC grains as well [1].


Of particular interest are presolar SiC grains with low ${}^{12}C/{}^{13}C$ ratios (${}^{12}C/{}^{13}C < \sim 20$). Among them are the Type AB and putative nova grains, some of which may have formed in the ejecta of SN explosions [e.g., 2, 3]. Low ${}^{12}C/{}^{13}C$ ratios have also been observed in a significant fraction of the SN Type C grains.

Here, we report on a search for new SiC grains with low ¹²C/¹³C ratios by NanoSIMS ion imaging, in order to get a better understanding on their origins and on the nucleosynthetic and mixing processes in their parent stars. In this search we identified a Type C grain with extremely low ¹²C/¹³C ratio. We present the B-, C-, N-, Al-, Si-, and Ti-isotopic compositions of this particularly interesting grain which we discuss in the context of an H ingestion SN model of [4].

Figure 1. C- and N-isotopic compositions of 13 AB grains and of C grain KJE3-110 from this study in comparison to literature data of presolar SiC grains [5].


Experimental: SiC grains from the Murchison separate KJE (median size: 1.14 µm) [6], dispersed on a clean Au foil, were screened for grains with low ¹²C/¹³C ratios by C and Si ion imaging with the NanoSIMS at MPI for Chemistry. For this purpose a focused Cs⁺ ion beam (~1 pA, 100 nm) was rastered over 149 30 x 30 um²-sized areas on the Au foil and negative secondary ion images of ¹²C, ¹³C, ²⁸Si, ²⁹Si, and ³⁰Si were recorded in multi-collection. Subsequently, 13 identified AB grains and one C grain were measured for C-, N-, Li-, and B-isotopic compositions, and the C grain in addition for Mg-Al and Ca-Ti-isotopic compositions. We recorded in multi-collection negative secondary ions of ¹²C, ¹³C, ¹²C¹⁴N, ¹²C¹⁵N, ²⁸Si (Cs⁺ ion source, ~1 pA, 100 nm), and positive secondary ions of ⁶Li, ⁷Li, ¹⁰B, ¹¹B, and ²⁸Si, of ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, and ²⁸Si, and of ²⁸Si, ⁴⁰Ca, ⁴⁴Ca, ⁴⁸Ti, and ⁵⁰Ti (Hyperion O⁻ source, ~3 pA, 100 nm).


Figure 2. Si-isotopic compositions of 13 AB grains and of C grain KJE3-110 from this study in comparison to literature data of presolar SiC grains [5].

Results and Discussion: The C-, N-, and Si-isotopic ratios of the AB grains from this study are in line with those from the literature [5, and references therein] (Figs. 1, 2). Boron-isotopic ratios are normal, albeit within large experimental uncertainties of ~30%. Type C grain KJE3-110 has a very low ${}^{12}C/{}^{13}C$ ratio of 1.03 ± 0.01, very similar to C grain G240-1 from the study of

[7, 8] which has ${}^{12}C/{}^{13}C = 1.04 \pm 0.01$ (Fig. 1). Grain KJE3-110 is heavily enriched in ${}^{15}N$, ${}^{26}Al$, and the heavy Si isotopes, with ${}^{14}N/{}^{15}N = 11.0 \pm 0.03$, ${}^{26}Al/{}^{27}Al = 0.041 \pm 0.002$, $\delta^{29}Si = 1825 \pm 35$ ‰, and $\delta^{30}Si = 1484 \pm 40$ ‰ (Figs. 1-3). No excess ${}^{44}Ca$ was observed, which constrains ${}^{44}Ti/{}^{48}Ti$ to < 4.2 x 10⁻³. The ${}^{50}Ti/{}^{48}Ti$ ratio is about solar. The B concentration is low (${}^{11}B/{}^{28}Si = 3 \times 10^{-5}$), which did not allow to get a meaningful ${}^{11}B/{}^{10}B$ ratio.

Figure 3. Initial ²⁶Al/²⁷Al and ¹²C/¹³C ratios of C grain KJE3-110 in comparison to literature data of SiC grains [5].

Figure 4. Profiles of isotopic ratios in the interior of a 25 M_{\odot} SN according to model 25T-H [4]. Predicted ratios are shown by solid lines, those of grain KJE3-110 by dotted lines. Note the x-axis break at $M \sim 7.2 M_{\odot}$.

It is undisputed that C grains formed in the ejecta of SN explosions [e.g., 9]. The C-, N-, and Al-isotopic

ratios of grain KJE3-110 suggest contributions from explosive H burning, favoring H ingestion SN models. In the following we will discuss the data of KJE3-110 in the context of SN model 25T-H [4], which offers the best prerequisites to produce high abundances of ¹³C, ¹⁵N, and ²⁶Al. Model 25T-H describes a 25 M_{\odot} SN with artificially increased temperature and density in the He burning shell to mimic the explosive conditions of a 15 M_{\odot} SN, and ingestion of 1.2 % of H into the He burning shell prior to the explosion [4].

Profiles of selected isotopic ratios predicted by model 25T-H are shown in Fig. 4 (solid lines), together with the isotopic ratios measured in KJE3-110 (dotted lines). In a thin layer around $M = 6.98 M_{\odot}$ (thick lightblue line in Fig. 4) isotopic ratios of grain KJE3-110 are relatively well matched, except for ²⁶Al/²⁷Al and ${}^{30}\text{Si}/{}^{28}\text{Si}$ (not shown), which are off by factors of ~10. However, the C/O ratio is only $\sim 10^{-2}$ which makes formation of SiC very unlikely. Following the approach in [3], considering heterogeneous mixing over larger scales (from 6.82 to 11 M☉) and adjustment of predicted ¹²C/¹³C and ²⁶Al/²⁷Al ratios by factors of 3 and 5, respectively, it is possible to find a good fit to measured ratios along with C/O >1. The isotopic ratios of KJE3-110 can be reproduced within factors of <1.7; exceptions are the 44Ti/48Ti and 11B/28Si ratios which are too high by factors of 7 and ~10, respectively. We note that the production of ⁴⁴Ti and ¹¹B is very sensitive to model parameters and that the B/Si ratio may be affected by fractionation during grain condensation.

While the C-, N-, and Al-isotopic ratios of grains KJE3-110 and G240-1 are very similar, grain KJE3-110 has a much higher enrichment of the heavy Si isotopes. This suggests heterogeneous mixing of matter that experienced explosive H burning (high ¹³C, ¹⁵N, ²⁶Al) with matter that experienced neutron-capture nucleosynthesis (enhanced ^{29,30}Si) in SNe and supports similar conclusions previously drawn by [8, 10, 11].

Acknowledgements: We thank A. Sorowka for SEM analyses, and E. Gröner and P. Schuhmann for technical support on the NanoSIMS.

References: [1] Zinner E. (2014) In *Meteorites and Cosmochemical Processes*, Vol. 1 (ed. A. M. Davis), pp. 181-213, Elsevier. [2] Liu N. et al. (2017) *ApJ*, 842, L1. [3] Hoppe P. et al. (2019) *ApJ*, 887, 8. [4] Pignatari M. et al. (2015) *ApJ*, 808, L43. [5] Stephan T. et al. (2020) *LPS LI*, Abstract #2140. [6] Amari S. et al. (1994) *GCA*, 58, 459-470. [7] Nittler L. et al. (2006) 69th Ann. Meeting of the Meteoritical Society, Abstract #5316. [8] Liu N. et al. (2016) *ApJ*, 820, 140. [9] Pignatari M. et al. (2013) *ApJ*, 771, L7. [10] Liu N. et al. (2018) *ApJ*, 855, 144. [11] Hoppe P. et al. (2018) *ApJ*, 869, 47.