
Laboratory technology and cosmochemistry
Ernst K. Zinnera,1, Frederic Moynierb, and Rhonda M. Stroudc

aLaboratory for Space Sciences and Physics Department, and bDepartment of Earth and Planetary Sciences, Washington University, St. Louis,
MO 63130; and cMaterials Science and Technology Division, Code 6360, Naval Research Laboratory, Washington, DC 20375

Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved March 14, 2011 (received for review October 12, 2010)

Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have
been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller
samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the
Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed.
Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accel-
erator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss
near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS.

microanalysis | extraterrestrial materials

Cosmochemistry is concerned with
the study of the Solar System
(SS), its formation, its history,
and the processes that shaped

the planets. This is mainly accomplished
through the analysis of extraterrestrial
samples, astronomical observations from
Earth and space, and in situ measurements
by robotic spacecrafts. The latter is the
topic of a separate chapter; this chapter
is concerned with the question of how
recent advances in laboratory instrumen-
tation have led to revolutionary discover-
ies in cosmochemistry.
The study of extraterrestrial samples

includes the analysis of meteorites (from
asteroids, Mars, and the Moon), lunar
samples (returned by Apollo), micromete-
orites (1), interplanetary dust particles
(IDPs) (2, 3), samples returned from
comets (Stardust) (4), asteroids (HAY-
ABUSA) (5), and samples from the Sun
(Genesis) (6).
Throughout the 20th century, continu-

ous development of analytical instrumen-
tation has led to a deep understanding of
how the SS formed, what material con-
tributed to its formation, what processes
took place in its early history, and what was
the time scale. An important step in the
development of instrumental capabilities
was the Apollo Program. Funding for in-
strumentation for the analysis of returned
lunar samples led to analytical advances
that, in turn, resulted in pathbreaking
discoveries in other fields. Examples are
the discovery of 16O excesses in Ca-Al–
rich inclusions (CAIs) (7) and evidence
for the initial presence of 26Al in the
early SS (ref. 8; see also ref. 9).
The last two decades have seen a pleth-

ora of instrumental developments that
have led to revolutionary discoveries. The
whole field of the analysis of extraterres-
trial materials has grown to an extent
and involves so many different analytical
techniques that a detailed survey is com-
pletely out of the question in the frame-

work of this paper. In our treatment,
we will emphasize the impact of instru-
mentation on cosmochemistry. This will
exclude many conventional techniques,
such as X-ray analysis in the electron
microprobe and SEM, neutron activation
analysis, conventional X-ray fluorescence,
and X-ray diffraction analysis, which are
important to cosmochemistry but are dis-
cussed extensively elsewhere.
Recent progress in instrumental devel-

opments has mainly been made along two
lines.

i) Increase in spatial resolution and sen-
sitivity of detection, allowing for the
study of increasingly smaller samples
such as IDPs, stellar condensates
(presolar grains), and returned mate-
rial from the Stardust and Genesis
missions. Examples of instruments in-
clude the transmission EM (TEM),
secondary ion MS (NanoSIMS), reso-
nance ionization MS (RIMS), Auger
probe, atom probe, and synchrotron
X-ray fluorescence (μ-XRF).

ii) Increase in the precision of isotopic
analysis that allows for more precise
dating, the study of isotopic heteroge-
neity in the SS, and other studies. An
example is multicollector inductively
coupled plasma MS (MC-ICP-MS).

In some cases, one can achieve both high
precision at fairly high spatial resolution.
Examples are ion microprobe analysis of
the Al-Mg system and O-isotopic meas-
urements of chondrules and CAIs with
large-sector ion microprobes and Faraday
cup detection.
The small amounts of material returned

by the Stardust and Genesis missions have
not only provided motivation to try new
analysis and sample handling (10) techni-
ques but have fostered collaborations and
combination of a multitude of different
analytical instruments. As an example, the

reader is referred to a special issue of
Meteoritics and Planetary Science (11) that
is devoted to the analysis of material re-
turned by the Stardust mission.
In the following, we will shortly describe

various instrumental techniques and dis-
cuss important results obtained by their
application.

Ion Microprobe
The ion microprobe has become the most
important instrument for the isotopic
analysis of small samples (12, 13). It uses
SIMS. In this technique, a primary ion
beam (O or Cs) of typically 15–20 keV
energy is focused into a small spot onto the
sample. Of the atoms sputtered by the
primary beam bombardment, a certain
fraction (the ionization efficiency strongly
depends on the element) is emitted as ions,
and these secondary ions are analyzed in
a double-focusing magnetic sector mass
spectrometer either by single ion counting
in electron multipliers or by charge mea-
surement in Faraday cups (FC).
One of the major applications of the ion

microprobe is the isotopic analysis of
presolar grains (14, 15). These grains,
found in primitive meteorites, are bona
fide stardust. They condensed in the ex-
panding atmospheres of late-type stars
[red giant branch (RGB) and asymptotic
giant branch (AGB) stars] and in the
ejecta from supernova (SN) explosions.
They carry the isotopic compositions of
their stellar sources and thus, give infor-
mation about stellar nucleosynthesis and
the isotopic evolution of the Galaxy. The
ion microprobe makes it possible to
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measure isotopic ratios in presolar grains
down to less than a micrometer in diameter.
A considerable advance in the study of

small grains has been brought about by
a new type of ion microprobe, the Nano-
SIMS (16). This instrument is character-
ized by a small primary beam spot (down
to 50 nm for Cs), high secondary ion
transmission at high mass resolution
(needed for separation of atomic ions
from molecular interferences), and up to
seven detectors. The NanoSIMS has
played an essential role in the discovery of
presolar silicates (17, 18). Although pre-
solar silicates in primitive meteorites are
more abundant than other presolar grain
species such as SiC, graphite, corundum,
and spinel (14, 15), presolar silicates are
small (typically 250–300 nm in diameter)
and have to be detected in the presence of
an overwhelming number of isotopically
normal silicates of SS origin. This makes it
necessary to measure the isotopic compo-
sitions of thousands and tens of thousands
of grains, achieved by isotopic raster im-
aging. Fig. 1 shows O-isotopic ratio images
of a 10-μm × 10-μm area covered with
small grains from the Acfer 094 primitive
meteorite (18). One grain is identified
by its anomalous isotopic compositions
(excess in 17O and deficit in 18O). Its
enlarged SEM image is also shown.
Isotopic imaging in the ion microprobe

has been used for the detection of rare
grain types such as SiC grains of type
X, which have 28Si excesses, indicating
an SN origin (19). Even rarer are SiC
grains with large 29Si and 30Si excesses,
also believed to have an SN origin. Recent
automatic imaging with the NanoSIMS
identified such grains, and their isotopic
ratios provide information on SN nucleo-
synthesis (20).
Isotopic raster imaging in the NanoSIMS

has identified D- and 15N-rich hotspots,
small areas with extremely large D and 15N
excesses in organic matter from primitive
meteorites (21) and in primitive IDPs (22,
23). These excesses indicate the presence
of material from the presolar molecular
cloud. Primitive IDPs not only have hot-
spots but also bulk enrichments in 15N as
well as high abundances of presolar grains

(silicates and SiC). The last study (23) is
especially interesting, because in addition
to the NanoSIMS, it applies the TEM,
Raman microprobe, and X-ray absorption
near-edge structure (XANES; see below)
to the analysis of IDPs believed to have
originated from the comet 26P/Grigg-
Skjellerup.
The ion microprobe has also been im-

portant in the analysis of material returned
from the comet Wild 2 by the Stardust
mission. The NanoSIMS was used to
identify true O-rich stardust material in
impact craters on Al foil (24) and a pre-
solar SiC grain in an aerogel capture cell
(25). Ion microprobe oxygen isotopic
analysis of Inti, a refractory inclusion
captured by Stardust, showed a 16O-rich
composition (26), confirming its similari-
ties to CAIs. The presence of a refrac-
tory inclusion formed in the inner SS in
a comet from the Kuiper belt indicates
mixing of material from the inner to the
outer solar nebula. Another piece of evi-
dence confirming mixing was obtained by
the ion-probe analysis of chondrule-like
objects in cometary material from Star-
dust, which had O-isotopic compositions
similar to those of chondrules from car-
bonaceous chondrites (27).
With large-radius ion microprobes and

multidetection with FC, a precision
approaching that of thermo-ionization
mass spectrometry (TIMS) or inductively
coupled plasma-source MS equipped with
multiple collectors (MC-ICP-MS) has been
achieved, whereas the primary beam di-
ameter is still only ∼25 μm (28). Such
measurements on chondrules have estab-
lished that 26Al was uniformly distributed
in the early SS, which can be used as
a fine-scale chronometer for early SS
events (28, 29). A noteworthy technical
advance with large-radius ion microprobes
that have direct ion imaging capability,
such as the Cameca ISM 1270/1280, has
been the stacked CMOS-type active pixel
sensor (SCAPS). This device allows one to
obtain high-spatial resolution isotopic im-
ages with high sensitivity. It has not only
been successfully used in the search for
presolar silicates (30), but it has also led to

the discovery of a reservoir extremely en-
riched in 17O and 18O in the early SS (31).
The MegaSIMS combines SIMS and

accelerator MS (AMS). Its main design
characteristic is not high lateral spatial
resolution but high depth resolution and
utmost sensitivity (32, 33). It was especially
built for the isotopic analysis of solar wind
N and O implanted into samples exposed
during the Genesis mission (6). Because
solar wind ions are implanted at shallow
depth and low fluence, high depth resolu-
tion and sensitivity are extremely impor-
tant. MegaSIMS analysis of Genesis
samples has established the N- and O-
isotopic compositions of the Sun (34, 35).
Both have been the topic of intense debate
for decades (36, 37).

Laser Ablation Gas MS
The Sun’s N-isotopic composition ob-
tained with the MegaSIMS agrees with
that obtained by laser ablation gas MS
(LA-GMS), where the solar wind-im-
planted N was excavated layer by layer by
UV laser pulses (38). This technique was
also used for the analysis of noble gases in
Genesis samples (39). If differs from IR
laser bombardment, where sample heating
leads to the release of noble gases and
where no depth profiles can be obtained.
An example is the analysis of He and Ne in
cometary matter from Stardust (40).

Auger EM
Although the electron beam used for X-ray
analysis in the electron microprobe or
SEM can be focused into a very small spot
of only a few nanometers, the size of the
volume from which X-rays are emitted is
typically 1 μm in size. This is much larger
than the typical size of presolar silicate
grains identified by isotopic imaging in the
NanoSIMS. Auger electrons, in contrast,
are detected only from the top few nano-
meters of the sample and can be used for
elemental analysis on this spatial scale
(41, 42). Thus, Auger EM (AEM) is the
ideal complement to the NanoSIMS for
the in situ elemental analysis of sub-
micrometer grains.

RIMS
One of the limitations of SIMS is that,
generally, it cannot separate isobaric
interferences (e.g., 92Zr from 92Mo). One
of the great advantages of RIMS is that it
uses a finely tuned laser beam to selec-
tively ionize the neutral atoms of a given
element sputtered from the sample by an
ion beam or desorbed by a laser pulse (43,
44). These ions are then analyzed for their
masses in a time of flight (TOF) mass
spectrometer. The other advantage is that
a large fraction (up to 50%) of the atoms
released from the sample can be ionized
and detected.

Fig. 1. Isotopic ratio images of O calculated from isotopic raster images obtained with the NanoSIMS.
An enlarged SEM picture of a presolar silicate identified from the isotopic images is also shown. Mod-
ified from Nguyen and Zinner (18).
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These features have been used to mea-
sure the Mo- and Zr-isotopic compositions
of presolar SiC grains (45). Fig. 2 shows
the Mo-isotopic patterns of two presolar
SiC grains, identified by their C-, N-, and
Si-isotopic ratios as originating from an
AGB star (mainstream grain) and a su-
pernova (type X grain) (46). The patterns
of these two grains are completely differ-
ent, indicating different nucleosynthetic
processes (s process and neutron pulse,
respectively). Another important RIMS
result is the identification of the initial
presence of 99Tc in presolar SiC grains
(47). The detection of Tc, which does
not have any stable isotopes, in stars (48)
played an important role in the history
of the theory of nucleosynthesis (49).

Microprobe Two-Step Laser MS
A variation of RIMS that is applied to the
analysis of organic molecules is microprobe
two-step laser MS (μL2MS). In this tech-
nique, a whole family of organic com-
pounds desorbed from the sample with
a pulsed IR laser beam is ionized reso-
nantly by a UV laser beam. For example,
UV light with a wavelength of 266 nm
results in electronic excitation of the aro-
matic ring so that aromatic compounds
can be selectively ionized in this way. The
detailed masses of these compounds are
determined in a TOF mass spectrometer.
This techniques has led to the identifica-
tion of polycyclic aromatic hydrocarbons
(PAHs) and alkylated derivatives in IDPs
(50) and PAHs in presolar graphite grains
(51). Recently, it has resulted in the
identification of N-rich aromatic com-

pounds in cometary samples from Stardust
(52), similar to what is observed in IDPs.
This finding is consistent with the belief
that some IDPs have a cometary origin.

AMS
In AMS, negative ions typically produced
by sputtering are accelerated to energies of
a few MeV and sent through a stripping
foil or gas cell, which turns them into
positive ions that subsequently go through
a magnetic sector mass spectrometer. The
outstanding characteristic of this tech-
nique is the extreme sensitivity to rare
(radioactive) isotopes in the presence of
high abundances of other (stable) iso-
topes. One of the most exciting discoveries
by AMS is the detection of the radioiso-
tope 60Fe in deep-sea samples deposited
2.8 Myr ago (53). This finding indicates
a nearby SN explosion a few million
years ago.

TEM
TEM enables analysis of grain structure,
elemental composition, and local bonding
at scales ranging from micrometers to
subnanometers. TEM images are formed
from electrons transmitted through a thin
sample (<200 nm) illuminated with high-
energy electrons (usually 200 or 300 keV).
The contrast in a given image depends
on the electron beam illumination con-
ditions (e.g., parallel or focused probe)
and the selection of transmitted electrons
that have undergone specific kinds of in-
teractions with the sample (e.g., diffrac-
tion, high-angle scattering, or inelastic
scattering). The most common types of
TEM images in cosmochemistry studies
are bright-field TEM (BF-TEM) for
determination of microstructure, high-
resolution TEM (HR-TEM) for imaging
of lattice structure and atomic planes, se-
lected area electron diffraction (SAED)
for crystal structure determination, scan-
ning TEM annular dark field (STEM-
ADF) for atomic number contrast, and
energy loss-filtered TEM (EF-TEM) for
elemental mapping. In addition to imag-
ing, TEM analysis often includes two types
of spectroscopy: energy dispersive X-ray
spectroscopy (EDX) and electron energy
loss spectroscopy (EELS); both provide
elemental composition data, and in the
latter case, they also provide information
about bond configurations and oxidation
states. More details of these techniques
can be found in Williams and Carter (54).
Applications of EELS are also discussed
herein along with the related synchrotron-
based XANES analysis.
The structural and chemical data ob-

tained from TEM have fundamentally
changed our understanding of the con-
ditions of formation and alteration of SS
and extrasolar materials. Studies of pre-
solar grains provide direct constraint on

circumstellar dust condensation conditions
including temperature, pressure, order of
phases condensed, and deviations from
thermodynamic equilibrium (55–58)
(Fig. 3). For SS materials, such as the
Stardust comet Wild 2 samples, TEM data
regarding crystallinity and the presence
of subgrains inform our understanding of
both nebular condensation conditions
and radial transport processes (4, 59).
Signatures of shock as well as thermal,
aqueous, and radiation processing can all
be identified. As the quality of electron
optics and stability of the electron emitters
in transmission electron microscopes has
improved, the ability to detect ever more
subtle processing signatures has also im-
proved. Field emission sources, aberration-
corrected lenses, and monochromation
now permit detection of signatures as
minute as single-atom impurities in some
cases (60, 61).

Focused Ion-Beam Microscopy
Focused ion-beam microscopy (FIB)
addresses the need to prepare TEM
samples of very heterogeneous materials
(e.g., sections of chondrite matrix or rims
associated with chondrules and CAIs)
(62, 63) and/or isotopically anomalous or
otherwise unique grains ranging in size
from microns to submicrons (56, 64). The
FIB is similar to an SEM with a Ga+ ion
beam in place of the electron beam (FIB)
or in combination with an electron beam
(FIB-SEM) (65). The user controls the
Ga+ beam current and raster pattern to
remove sample material by sputtering and

Fig. 2. Molybdenum isotopic patterns measured
by RIMS in two different presolar SiC grains. The
C-, N-, and Si-isotopic ratios of these grains are
also given. Modified from Pellin et al. (46).

Fig. 3. Scanning TEM annular dark-field (STEM-
ADF) image of a type-Z presolar SiC grain. The
grain was first isolated from the host meteorite by
physical disaggregation and then, was sectioned
by focused ion-beam microscopy to form an elec-
tron transparent section (123). The STEM-ADF
image reveals a crack that extends from the grain
surface into the interior as well abundant sub-
grains. Energy dispersive X-ray spectroscopy (EDX)
shows that the crack is oxidized and that the
subgrains include multiple phases, some rich in Fe
and Ni and others rich in Ti and V.
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creates a site-specific electron transparent
membrane. The membrane is then ex-
tracted from the sample and attached to a
TEM support grid by in situ or ex situ
micromanipulation for subsequent TEM,
SIMS, or XANES analysis. Needle-shaped
specimens for atom probe tomography can
also be produced.

Atom Probe Tomography
Atom probe tomography is a time of flight
MS method for atom by atom tomographic
reconstruction of needle-shaped specimens
(66). Atoms are evaporated from the
needle tip by a combination of applied
high-voltage and pulsed laser heating and
are collected with a 2D position sensitive
detector. Using an estimate of the radius
of curvature of the needle tip (50–150 nm)
and the TOF and position of a detected
atom, the mass and the original location
of the atom in the specimen can be de-
termined. Recent atom probe measure-
ments of SiC grains show promise for
characterization of trace element segre-
gation in presolar grains that could result
from heterogeneous nucleation or ion
implantation of circumstellar or inter-
stellar gas (67, 68). Preparation of samples
that evaporate uniformly is the major
challenge in all atom probe experiments.
Needles of pure metal specimens can
be obtained by electrochemical etching,
but most samples are now prepared by
FIB techniques.

Analysis with Synchrotron Radiation
The installation of third-generation elec-
tron storage rings specifically designed for
the production of synchrotron radiation
resulted in new capabilities for micro-
analysis. In these facilities, high-intensity
X-rays are produced by insertion devices
(wigglers and undulators) in the path of
the electron beam and after selection of
a small energy range by a monochromator,
can be focused down to diameters of <1
μm by microfocusing mirrors (69). This
makes the high-sensitivity analysis of small
samples possible. There are several ana-
lytical techniques making use of synchro-
tron radiation (70) that have been applied
to extraterrestrial samples. Among the
techniques are XRF, X-ray computed mi-
crotomography (XRCMT), X-ray diffrac-
tion (XRD), X-ray absorption fine
structure (XAFS), and XANES.

XRF Analysis. In synchrotron XRF analysis,
the (usually monochromatic) finely focused
X-rays are used to produce characteristic
X-rays from the sample, which are analyzed
for their energy, giving information on
the elemental composition of the sample
(71). Because of the atomic charge (Z)
dependence of fluorescence, XRF is es-
pecially suited to the analysis of heavier
elements. Element images can be obtained

by raster scanning. This method has been
successfully applied to determine the
location and composition of cometary
fragments along dust particle tracks in
Stardust aerogel (72, 73). These studies
found compositional differences between
the debris along tracks and terminal par-
ticles. Cluster IDPs, analyzed in a similar
way, might be an analog to cometary par-
ticles collected by Stardust (74). An im-
pressive SXRF study is the measurement
of trace element abundances in individual
presolar SiC grains ∼2 μm in size, pro-
viding evidence that the short-lived iso-
tope 93Zr had condensed into the grains at
the time of their formation (75).

XRCMT. The 3D internal structure of an
object can be obtained by combining many
X-ray images, usually by rotating the
sample (71, 76). Images of X-ray attenu-
ation yield 3D density structure. This
technique has been applied to determine
the location and size of cometary particle
fragments in Stardust aerogel tracks (77,
78). X-ray tomography can also be done
from XRF images and thus, provides the
3D distribution of different elements.
However, this analysis requires a pencil
beam and is much more time intensive.

Synchrotron Fourier Transform Infrared Spec-
troscopy. The use of infrared light from
synchrotron light sources leads to an in-
crease in brightness of 100–1,000 times over
conventional IR sources and allows imag-
ing with diffraction-limited beam spots. The
achieved high sensitivity is instrumental
for the analysis of small samples such as
volatile cometary material deposited in
aerogel tracks from the Stardust mission,
allowing for the identification of several
organic compounds such as amines and
amino acids (79, 80).

XANES. SynchrotronXANES(81)andTEM-
based electron loss near-edge spectros-
copy (ELNES) (82) probe the energy-
level structure of atoms in a material. In
XANES, the absorption of a monochro-
mated, synchrotron X-ray source because
of excitation of electrons from an inner
shell is measured as a function of energy.
In ELNES, a type of TEM-EELS, the in-
tensity of inelastic scattering of the incident
electron beam by the sample because of
core-level excitation is measured as a func-
tion of the energy loss. Both techniques
are commonly used in cosmochemistry to
determine oxidation states of Fe (83–85),
Ti (25, 86), and other transition metals and
to fingerprint carbon bond distributions
(87) (e.g., graphite vs. diamond vs. different
organic molecules) to constrain formation
conditions. In general, soft X-ray XANES
has greater sensitivity and energy resolu-
tion (<0.1 eV) than does most ELNES
(1 eV) because of the bright mono-

chromated X-ray source. Soft X-rays are
also less damaging to many materials, par-
ticularly organics, than high-energy elec-
trons. Hard X-ray XANES can be used to
characterize thicker samples with ∼1 eV
energy resolution, including submicron
particles captured in aerogel (85). How-
ever, the achievable spatial resolution of
ELNES (subnanometer) is much greater
than that of XANES (>10 nm), and 0.1
eV energy resolution can be achieved in
a monochromated electron microscope
(60, 88).

Raman Microprobe
Raman spectroscopy gives information on
molecular bonds, and the Raman micro-
probe allows analysis on a submicrometer
level. It has been successfully applied to
the study of insoluble organic matter in
primitive meteorites (89), where it was
found that metamorphic processes and
radiation affect the Raman signal to the
identification of ultra-primitive IDPs (23)
(see above), the analysis of returned
Stardust samples (90), and presolar SiC
grains (91). In the last study, the Raman
spectrum of a supernova grains indicates
crystallographic disorder, whereas grains
from AGB stars have a well-crystallized
cubic structure.

NMR Spectroscopy
Meteorites and IDPs contain organic ma-
terial, some of which might have a presolar
origin. Recently, NMR analysis has been
used to determine the structure of organic
macromolecules, the insoluble organic
matter (IOM). In solid-state NMR spec-
troscopy, the resonant frequency of a spin
one-half nucleus such as 1H or 13C de-
pends on its electronic environment. Thus,
an NMR spectrum provides information
about the bonding of these nuclei (92).
The study of IOM from primitive meteor-
ites revealed many aromatic and aliphatic
functional groups as well as diamond (92,
93). It was found that the relative abun-
dances of aromatic and aliphatic carbon as
well as nanodiamonds vary with meteorite
group and might provide information on
the oxidative nature of aqueous fluids on
the meteorites’ parent bodies.

ICP-MS
The mid-1990s saw the development of
ICP-MS equipped with multiple collectors
(MC-ICP-MS). ICP sources can ionize
most elements and have permitted the
precise isotopic measurement of elements,
such as transition metals W, Hf, and Zr,
which are poorly ionized by the state of
the art TIMS. Because of rapid sample
throughput and because the instrumental
mass bias varies smoothly during an ana-
lytical session, the correction of the in-
strumental mass bias can be made with
an element different from the one being
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analyzed (e.g., Cu for Zn) and by brack-
eting standards (94). The combination of
laser ablation with MC-ISP-MS has per-
mitted precise in situ measurements of
Mg- and Si-isotopic ratios (95, 96).
During the last 15 y, MC-ICP-MS has

become one of the most important tech-
niques in isotope geochemistry and cos-
mochemistry laboratories. Here, we focus
on high-precision MC-ICP-MS isotopic
analyses that have led to breakthrough
discoveries in cosmochemistry.

Isotopic Heterogeneity in the Solar Nebula.
The presence of presolar grains in primi-
tive meteorites is evidence for incom-
plete homogenization of presolar material
during SS formation. Although presolar
grain can be analyzed individually, recent
improvements in analytical methods and
instrumentation, notably MC-ICP-MS,
have permitted resolution of small isotopic
heterogeneities for several elements in
bulk meteorites (e.g., Ti and Ni) (97–99),
whereas Fe and Zn have uniform isotopic
compositions (100, 101). Measuring the
abundance of several isotopes produced
by the same process provides useful con-
straints on the nucleosynthetic processes
responsible for the isotopic anomalies. In
addition, correlated isotopic effects are
used to quantify homogeneity in the SS
distribution of extinct radionuclides (e.g.,
60Fe T1/2 = 1.5 Myr) that could possibly be
used as chronometers. For instance, 58Fe
and 60Fe are synthesized together in core
collapse supernovae or AGB stars by
neutron capture reactions (102). Corre-
lated isotopic anomalies of 50Ti, 54Cr, 62Ni,
and 64Ni (97–99, 103) have been observed
in meteorites and suggest some large-scale
isotopic heterogeneity that has survived
mixing within the solar nebula. However,

the absence of 58Fe-isotopic anomalies
larger than 0.3–0.5 ε in bulk meteorites
argues for the injection of 60Fe in the early
SS and its homogenization before the
formation of planetary bodies (100).

Tungsten Isotopes: Age of the Metal/Silicate
Differentiation on Earth and Asteroids and
the Giant Impact as the Origin of the Moon.
Although W is a moderately siderophile
element, Hf is a lithophile element and is
strongly fractionated from W during core
formation. 182Hf/182W chronometry can
date Hf/W fractionations that occurred up
to ∼60 Myr after the formation of 182Hf
(half-life = 9 Myr). Comparison of ter-
restrial mantle samples with chondrites
has been used to evaluate the timing of
terrestrial core formation (104–107). Al-
though Lee and Halliday (105) did not
find any difference in the W-isotopic
composition between terrestrial samples
and chondrites, later studies detected
a small but resolvable ∼20 ppm excess of
182W in the Earth relative to chondrites
(106–108). These results imply that core
mantle differentiation occurred probably
within 30 Myr after SS formation.
Ironmeteorites, thought to represent the

core of asteroids, have deficits of 3–5 ε in
182W/184W ratio compared with terrestrial
samples (109–112). These deficits corre-
spond to differentiation ages of ∼1–5
Myr after SS formation. The first Pb-Pb
dating of Group IVA iron meteorites
confirmed this rapid differentiation of
iron meteorite parent bodies (113).
The silicate fraction of the Moon has

the same 182W/184W ratio as the Earth’s
mantle (114). The implications of this re-
sult on the time of the giant impact as the
origin of the Moon depend on its Hf/W
ratio. A higher than terrestrial Hf/W ratio,

derived from the W/U ratio of lunar rocks
(114), implies a time for the giant im-
pact >60 Myr after SS formation. How-
ever, Yin et al. and Yin and Antognini
(115, 116) argued that the Hf/W ratios
of the two planetary bodies were simi-
lar, reducing the time to ∼30 Myr, as
initially suggested (106, 107).

Variations of Stable Isotopes of Heavy Ele-
ments: Tracers of SS Processes. Small stable
isotopic fractionations of heavy elements
have been measured by MC-ICP-MS in
meteorites and lunar samples for moder-
ately volatile elements (e.g., Zn and Cd)
(117, 118) and more refractory elements
(e.g., Fe and Ni) (119, 120). These isotopic
variations, which are too small to be mea-
sured by any other instrument, brought
additional constraints on the volatile his-
tory and the physical processes (e.g.,
impacts), which have modified the mete-
orite parent bodies and the Earth. The
abundance of Zn, a moderately volatile
element, in carbonaceous chondrites de-
creases in this order: CI > CM > CV-CO
> Earth (121). Its isotopic composition
decreases in the same order from iso-
topically heaviest in CIs to isotopically
lightest in the Earth (117). The opposite
pattern is expected if the Zn depletion in
Zn in chondrites and Earth relative to
CI chondrites is because of volatilization.
The observed pattern is an argument in
favor of an incomplete accretion origin for
the volatile depletion in the SS (122).
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